Abstract—This study has utilized the advantages of inertial sensors and complementary filter to estimate the motions and attitudes. Although the progress in micro-electro-mechanical systems (MEMS) has improved the qualities of the inertial sensors, such as accelerometers and gyroscopes, their bandwidths limit them from accurate measurements and applications. However, by using the complementary filter properly, the signals can be adopted to generate reliable data for positioning. The frequency response and transfer to obtain the functions best results, of sensors are identified and the cut-off frequency of complementary filter is defined accordingly. To minimize the measurement error caused by the external forces and disturbances, a state estimator has been integrated into the system. Tests are conducted on linear and rotating platforms to validate the real-time performance of this system. The estimated data proves the functionality of this developed complementary filter to blend the high-frequency measurements of gyroscopes and low-frequency ones of accelerometers to generate trustworthy positioning information.

Keywords—inertial measurement; complementary filter; motion estimation

I. INTRODUCTION

The inertial measurements are widely used in the traditional avionic systems before the emergence of Global Positioning System (GPS). They are still playing important roles in those fields which GPS is not a candidate of positioning measurement, such as submerged vehicle and in-door positioning. Inertial Measurement Unit (IMU) is always the first candidate as the redundant measurement in the event of GPS failure. While GPS relies on the signals from the satellite in the space, which can be interfered or blocked by external objects, the IMU always generates signals of vehicle motions independently.

It has been understood that the noise is the major problem in the IMU applications. As the positions and attitudes both are generated by the 1st or 2nd integration of the measurements, drifting and pulsating noises will create uncontrollable errors in the calculation. Researches and studies of eliminating these measured errors have never stopped. Mahony [1] has proposed a combination of two nonlinear complementary filters to improve the calculation of unmannned helicopter attitudes interfered by the noise of gyroscope signals. Rehbinder [2] and Martin [3] have adopted the state observer and Kalman filter to minimize the error in nonlinear rotating motions. Jurman [4] and Zhu [5] have utilized MEMS Attitude and Heading Reference System (AHRS) and Kalman filter to estimate the attitudes. Euston [6] has adopted the complementary filter, IMU and airspeed sensor for attitude estimation. Vasconcelos [7] proposed a discrete time-varying complementary filter to compensate the error caused by gyroscope measurement. Hong [8] has designed a fuzzy algorithm to compensate the error.

In general, accelerometer and gyroscope are the basic sensors to measure the linear acceleration and rotating speed respectively. In certain applications, magnetometer is also required to locate the magnetic north of earth and secondly form a supplementary orientation along with the use of gravity. To take advantages of them, this study has adopted the structure of complementary filter [1] and enhanced the performance by the passive filter proposed in [Mahony] to minimize the error caused by interfered measurements. The designed complementary filter is tested to estimate motions on linear and rotating platforms. The results have shown that the performance of the developed algorithm outperforms the commercial counterpart.

II. CHARACTERISTICS OF INERTIAL SENSORS

Generally, without any external force, accelerometers are used to measure the projected gravity force on each axis and the angular position can be calculated via trigonometric functions. However, this approach only can be applied to low frequency of motions because most of the MEMS design cannot generate accurate and un-disturbed high frequency signals. Furthermore, using gravity to estimate the attitude will prevent the calculation of yaw angle (heading). The earth magnetic field, measured by the magnetometer, is used to resolve this singularity commonly.

To accommodate this high frequency motions, gyroscope is adopted to measure the angular velocity so that relative angular motion can be obtained by integration. Unfortunately, this integration usually mixes with low frequency drifting and biased signals such that the results tend to diverge even if the sensor is stationary. This drawback prevents the gyroscope from being the primary sensor for attitude estimation.
III. ESTIMATION OF ATTITUDES

The most popular motion system used is the Euler angles, which defines the attitudes of an entity by yaw (ψ), pitch(θ) and roll(ϕ) angles, in the specific sequence of rotation with respect to Z, Y and X axes of a referred coordinate system. In general, the X, Y and Z axes of the inertial coordinate system are defined as North, East and Downward directions and Abbreviated as the NED coordinate. The directions of the rotated entity, usually are called the body coordinate, are defined by the Euler angles. The conformation of Euler angles between the inertial and body coordinates are shown in Figure 1.

![Figure 1. Conformation of Euler angles between the inertial and body coordinates](image)

Then the transformation between the inertial and body coordinates can be defined by a matrix calculation as

$$
\begin{bmatrix}
X' \\
Y' \\
Z'
\end{bmatrix}
=
\begin{bmatrix}
C_{\psi}C_{\theta} & -S_{\psi}S_{\theta} & C_{\psi}S_{\theta} \\
S_{\psi}C_{\theta} & C_{\psi}S_{\theta} & -S_{\psi}S_{\theta} \\
-S_{\theta} & C_{\theta} & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
$$

(1)

Where C_i is $\cos(i)$ and S_j is $\sin(j)$. Since the referred inertial signals are the gravity and earth magnetic flux, which can be defined as vectors in the Downward and North directions, i.e. Z and X axes.

The relationship between the measured signals on each axis of sensor in the body coordinate and the referred signals projected can be defined by the directional cosine, which states that any vector defined in two coordinate systems can be related as

$$
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix}
=
\begin{bmatrix}
\cos(\theta_{xy}) & \cos(\theta_{yz}) & \cos(\theta_{zx}) \\
\cos(\theta_{yx}) & \cos(\theta_{zy}) & \cos(\theta_{xz}) \\
\cos(\theta_{zx}) & \cos(\theta_{zy}) & \cos(\theta_{xz})
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
$$

(2)

where $\cos(\theta_{ij})$ is the cosine of the angle between the I axis of inertial coordinate and the j axis of body coordinate. Alternatively, the directional cosine matrix also defines the transformation between the inertial and body coordinates. Thus, the Euler angles can be estimated by using the projected vectors of gravity and earth magnetic flux measured by the accelerometers and magnetic sensors.

Hence, by normalizing the measurements of gravity and comparing the elements in the transformation matrix of Euler and directional cosine, the pitch and roll angles can be found as

$$
\theta = \sin^{-1}(-\cos(\theta_{zy})) = \sin^{-1}(-g_z) \quad (3)
$$

$$
\phi = \tan^{-1}\left(\frac{\cos(\theta_{xy})}{\cos(\theta_{yx})}\right) = \tan^{-1}\left(\frac{g_y}{g_z}\right) \quad (4)
$$

where g_x, g_y, and g_z are the normalized measured gravity on each axis in the body coordinate. Similarly, the yaw angle can be found by using the normalized earth magnetic flux measurements in the body coordinate as

$$
\psi = \tan^{-1}\left(\frac{m_x \cos(\phi) - m_y \sin(\phi)}{m_x \cos(\psi) + m_y \sin(\phi) \sin(\phi) + m_z \sin(\phi) \cos(\phi)}\right) \quad (5)
$$

where m_x, m_y, and m_z are the normalized measured earth magnetic flux on each axis in the body coordinate.

IV. COMPLEMENTARY FILTERING

Although the above-mentioned equations can be used to estimate the attitudes of an entity, the characteristics of the sensors make the calculation valid only in the low frequency of motion. To verify the dynamic range of sensors, the frequency responses are measured experimentally for the Xsens MTi IMU used in this study, the results of accelerometer and magnetometer are shown in Figure 2 and 3. Both sensors showed good dynamic response to the low frequency motions but the accelerometer would diverge, while the magnetic sensor would decay, in the high frequency.

![Figure 2. Dynamic response of accelerometer](image)

![Figure 3. Dynamic response of magnetometer](image)

On the other hand, the dynamic response of gyroscope, shown in Figure 4, has better fidelity in the high frequency but poor quality in the low frequency range.

![Figure 4. Dynamic response of gyroscope](image)

However, as the reliable frequency ranges of these sensors have overlapped and covered the whole range, the complementary filtering [9] emerges as the best candidate to estimate the attitudes in the dynamic motions.

To utilize the best performance of each sensor, the complementary filtering is designed to extract the low
frequency of the accelerometer/magnetometer and the high frequency of gyroscope as shown in Figure 5. Based on the measured frequency response of sensors shown in Figure 2–4, the dynamic response of sensors can be modeled as

\[
G_a(s) = (0.1s + 1)(0.05s + 1)
\]

(6)

\[
G_M(s) = \frac{50.265}{s + 50.265}
\]

(7)

\[
G_G(s) = \frac{s + 0.0185}{s}
\]

(8)

for accelerometer, magnetometer and gyroscope respectively.

To obtain the best estimation of the attitudes, the break frequencies of the low/high pass filters must be carefully defined to keep the valid signals while be capable of suppressing the unwanted noisy response of sensors. After carefully examination of the sensors’ dynamic models, the break frequency of low-pass filter was chosen at 2.5 rad/s for accelerometer and magnetometer. The break frequency of high-pass filter for gyroscope was selected at 3.3 rad/s such that the best comprehensive performance of the complementary filter is obtained. Furthermore, because the divergence of each sensor is approximated differently, the final low pass filters for accelerometer and magnetometer were chosen as

\[
G_{LA}(s) = \frac{1}{0.063s^3 + 0.475s^2 + 1.1937s + 1}
\]

(9)

\[
G_{LM}(s) = \frac{1}{0.3979s + 1}
\]

(10)

respectively. The high-pass filter for gyroscope was defined as

\[
G_H(s) = \frac{s^2}{s^2 + 0.6s + 0.09}
\]

(11)

To verify the effectiveness of this complementary filter, simulations on Matlab have been conducted. A frequency sweep test was done for the designed filtering. With the sensors modeled by the transfer function shown in Eq. 6–8 and the low/high pass filter modeled as Eq. 9–11, the designed complementary filter response is shown in Figure 6 for signals from accelerometer and gyroscope. The filtered response for signals from the magnetometer and gyroscope is shown in Figure 7. In both cases, unity response can be seen except in a small range where the gain and phase error are minimized. An additional compensation is added to further reduce the error, in which the inverse transfer function of Figure 6 and 7 is used.

Figure 5. Complementary filter for IMU

Figure 6. Simulated frequency response of complementary filtering of accelerometer and gyroscope outputs

Figure 7. Simulated frequency response of complementary filtering of magnetometer and gyroscope outputs

V. ADAPTIVE COMPLEMENTARY FILTER

The most important assumption up to this point is that no external force is applied to the system. When external load is applied, the measurements from the accelerometer would be interfered by the acceleration created by the external forces. To minimize the error caused by the interfered signal, a passive complementary filter developed by Mahony [1] is adopted. The processing of this passive complementary filter is shown in Figure 8. Generally, the signal from gyroscope will dominate the calculation to minimize the effects of biased acceleration signal. Thus, if the overall measured force in the accelerometer is greater or less than the magnitude of gravity, exceeding a tolerance, the passive complementary filter will be selected to estimate the attitude. With this enhancement, the developed system can calculate the attitude of a moving object no matter if external force exists or not.

Figure 8. Passive Complementary Filter [1]
VI. EXPERIMENTS AND RESULTS

To verify the performance of the designed complementary filter, various experiments are conducted and results are compared with the commercial products.

A. Hardware

The inertial measurement unit used in this study is the Xsens MTi integrated IMU. It can output the measured 3-axis accelerations, magnetic flux and angular velocities. This IMU has an onboard processor so that estimated attitudes are also output for reference which is used for comparison to check the performance of the developed algorithm. The key specifications of this IMU are listed in Table I.

<table>
<thead>
<tr>
<th>TABLE I. SPECIFICATIONS OF IMU SENSORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate</td>
</tr>
<tr>
<td>Measurement Range</td>
</tr>
<tr>
<td>Accelerometer</td>
</tr>
<tr>
<td>Gyroscope</td>
</tr>
<tr>
<td>Magnetometer</td>
</tr>
</tbody>
</table>

Other than the static equivalent condition, forced linear and rotating motions are applied to the unit in order to verify the robustness of the complementary filter. To generate rotating motion, a dual-axis rotating platform powered by AC servo motors is used. The actual rotation of the platform is measured by optical encoders whose resolution is 0.036°. The motion of the platform is commanded by PWM signals and recorded together with the measurements from the IMU for post-processing. The experiment apparatus is shown in Figure 9. To verify the performance in dual-axis motion, an inclined block is inserted underneath the IMU, as shown in Figure 10.

B. Experiments

Various experiments are designed to check the performance of the developed complementary filtering algorithm. All these tests are designed to check the performance of the system with or without external force, including:

1) Single-axis sinusoidal rotating motion
2) Dual-axis sinusoidal rotating motion
3) Single-axis step rotating motion
4) Single-axis linear acceleration/deceleration
5) Offset single-axis sinusoidal rotating motion

C. Results

1) Single-axis sinusoidal rotating motion

In this experiment, the platform was driven to make a ±10° rotation at various frequencies in the pitch axis. The results of estimated measurements of accelerometer, magnetometer and gyroscope were collected and plotted as a frequency diagram as shown in Figure 12. It is obviously that the developed complementary filtering algorithm performed better than the counterparts from the commercial IMU. The gain error is less than 1 dB in all the range of experiment.

2) Dual-axis sinusoidal rotating motion

At this stage, a 20° inclination was added to the IMU so that the system is under dual-axis rotating motion in the body coordinate. However, since the platform is actually rotated along the pitch axis as shown in Figure 10. The results are shown in Figure 13 which shows that the developed complementary filter can make better estimation than the onboard processor in the IMU.

The linear motion is generated by a ball screw driver controlled by an AC servo motor. The linear motion is measured by a laser range finder which has a resolution of 1µm. The apparatus of linear motion platform is shown in Figure 11.
3) Single-axis step rotating motion

The step response is checked to understand the transient response of the estimation to ensure the measurement under rapid motions. The testing data is shown in Figure 14. Comparing with the actual rotation measured by the optical encoder, the estimation made by the developed complementary filter tracked the actual motion with little error in real-time, while the estimation produced not only delayed but also with noticeable error by the commercial IMU. The settling time of the response from the commercial IMU is also far greater than the developed algorithm. For various sizes of step command, the settling time is drawn in Figure 15.

![Figure 14. Step response of the IMU and developed complementary filter.](image)

Also tested is the steady-state error for various sizes of step command. In Figure 16, the developed algorithm also performed better than the commercial counterpart.

![Figure 15. Steady-state errors for various sizes of step motions.](image)

4) Single-axis linear acceleration/deceleration

In this test, the IMU unit was placed at different angles form the direction of motion to validate the calculation of attitudes. The motion of linear platform is defined as shown in Figure 16. The estimated pitch and roll angles of the object are listed in Table II and III for various positioning angles in different axes. In most of the tests, the developed complementary filter made better estimation than the commercial IMU with no surprise. However, it is worth to notice that, in Table III, when the IMU was positioned 90°, the estimations made by the developed algorithm and the commercial unit both grow dramatically. This error is caused by a phenomenon called Gimbals Lock, in which calculation of Euler angle is close to a singularity.

![Figure 16. Testing pattern for linear motion.](image)
TABLE IV. PITCH ANGLE ESTIMATION ERRORS IN DUAL-AXIS LINEAR MOTION

<table>
<thead>
<tr>
<th>Axis of Rotation</th>
<th>Angle</th>
<th>Maximum Error IMU</th>
<th>Standard Deviation IMU</th>
<th>ACF</th>
<th>Maximum Error ACF</th>
<th>Standard Deviation ACF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0</td>
<td>4.3071</td>
<td>1.7219</td>
<td>1.3842</td>
<td>0.5440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.5302</td>
<td>2.6313</td>
<td>1.4163</td>
<td>0.4923</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.6993</td>
<td>1.8748</td>
<td>1.4811</td>
<td>0.7177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>3.7866</td>
<td>1.9697</td>
<td>1.4796</td>
<td>0.5591</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>4.3122</td>
<td>1.4873</td>
<td>1.4236</td>
<td>0.4603</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.1181</td>
<td>2.8910</td>
<td>1.3867</td>
<td>0.6506</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.0328</td>
<td>2.7632</td>
<td>1.4467</td>
<td>1.0037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>4.3686</td>
<td>3.4501</td>
<td>1.7465</td>
<td>1.2138</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>3.9950</td>
<td>2.2664</td>
<td>1.1544</td>
<td>0.4252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.9731</td>
<td>1.5409</td>
<td>1.2315</td>
<td>0.4910</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.1914</td>
<td>1.5917</td>
<td>1.1350</td>
<td>0.5241</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>3.1886</td>
<td>1.4526</td>
<td>0.6994</td>
<td>0.4873</td>
<td></td>
</tr>
</tbody>
</table>

TABLE V. ROLL ANGLE ESTIMATION ERRORS IN DUAL-AXIS LINEAR MOTION

<table>
<thead>
<tr>
<th>Axis of Rotation</th>
<th>Angle</th>
<th>Maximum Error IMU</th>
<th>Standard Deviation IMU</th>
<th>ACF</th>
<th>Maximum Error ACF</th>
<th>Standard Deviation ACF</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0</td>
<td>3.2542</td>
<td>1.3673</td>
<td>0.9924</td>
<td>0.4873</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.0097</td>
<td>1.5912</td>
<td>1.0018</td>
<td>0.4652</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2.9064</td>
<td>1.8768</td>
<td>0.9104</td>
<td>0.6021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>3.6021</td>
<td>1.6993</td>
<td>1.0579</td>
<td>0.5601</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>3.0322</td>
<td>1.5521</td>
<td>0.9250</td>
<td>0.4386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.4478</td>
<td>1.7645</td>
<td>1.0946</td>
<td>0.5246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>6.0854</td>
<td>5.3143</td>
<td>2.0282</td>
<td>1.6033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>32.6870</td>
<td>43.6478</td>
<td>9.2769</td>
<td>20.4322</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>3.3546</td>
<td>1.3996</td>
<td>1.2287</td>
<td>0.4160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.9174</td>
<td>1.5104</td>
<td>1.3013</td>
<td>0.4718</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.5856</td>
<td>2.6981</td>
<td>1.4242</td>
<td>0.7253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>4.3175</td>
<td>4.0465</td>
<td>1.4427</td>
<td>0.9819</td>
<td></td>
</tr>
</tbody>
</table>

5) Offset single-axis sinusoidal rotating motion

A 20cm offset is added to the IMU in the 0.4Hz sinusoidal yaw rotating motion in this test. This offset will create centrifugal and Coriolis forces on the measurements other than the gravity. Estimation of one case, no inclination and 0° pitch, is shown in Figure 17 and the developed complementary filtering algorithm produced less error than the commercial one. Results of all other cases are listed in Table IV and V. In most of the cases, the developed complementary filter performs better than the commercial IMU. Notice that the Gimbs Lock happened in this experiment, too.

![Figure 17. Pitch angle estimation errors in an offset rotation](image)

VII. CONCLUSIONS

This study has developed an adaptive complementary filter for estimating attitudes of moving object using measurements from an IMU. The developed algorithm has been simulated and proper compensation was added to improve the performance. Various experiments are conducted to validate the functionality of this developed system and the results show that the developed means outperforms those from the commercial IMU. By applying this complementary filtering algorithm, the signals measured by accelerometer, magnetometer and gyroscope can be blended wisely and properly to estimate the actual attitudes of a moving object accurately. This estimation can be used to augment the accuracy of GPS system or be a substitution when GPS signal is invalid.

The Gimbs Lock phenomenon was also noticed in the experiment which would prevents the developed algorithm from estimation in certain conditions. This issue could be resolved by using Sauererion instead of direction cosine matrix. However, the performance and capability of the complementary filter have been validated for future applications without any doubt.

ACKNOWLEDGMENT

This study was conducted under the funding supported by National Science Council of Taiwan, Project: NSC 97-2752-E-027-002-PAE and 98-2752-E-027-001-PAE. The authors appreciate all supports from National Science Council of Taiwan and its staff.

REFERENCES